Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 587
Filtrar
1.
Trends Immunol ; 44(2): 129-145, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623953

RESUMO

There are striking similarities between the sea urchin cavity macrophage-like phagocytes (coelomocytes) and mammalian cavity macrophages in not only their location, but also their behaviors. These cells are crucial for maintaining homeostasis within the cavity following a breach, filling the gap and functioning as a barrier between vital organs and the environment. In this review, we summarize the evolving literature regarding these Gata6+ large peritoneal macrophages (GLPMs), focusing on ontogeny, their responses to perturbations, including their rapid aggregation via coagulation, as well as scavenger receptor cysteine-rich domains and their potential roles in diseases, such as cancer. We challenge the 50-year old phenomenon of the 'macrophage disappearance reaction' (MDR) and propose the new term 'macrophage disturbance of homeostasis reaction' (MDHR), which may better describe this complex phenomenon.


Assuntos
Fator de Transcrição GATA6 , Macrófagos Peritoneais , Mamíferos , Animais , Fator de Transcrição GATA6/imunologia , Macrófagos Peritoneais/imunologia , Mamíferos/imunologia , Fagócitos/imunologia , Ouriços-do-Mar/imunologia
2.
J Zoo Wildl Med ; 53(4): 832-837, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36640087

RESUMO

Staphylococcal A and streptococcal G proteins are widely used in immunoassays when specific immunological reagents are unavailable, such as for wild animals. The affinity of bacterial proteins A and G to the immunoglobulins of seven Brazilian mammals were tested, including black-tufted marmoset (Callithrix penicillata, n = 5), golden-bellied capuchin (Sapajus xanthosternos, n = 13), woolly mouse opossum (Micoureus demerarae, n = 6), long-nosed armadillo (Dasypus novemcinctus, n = 5), collared anteater (Tamandua tetradactyla, n = 5), ocelot (Leopardus pardalis, n = 6), and vampire bat (Desmodus rotundus, n = 5). Blood samples were collected from animals that were rescued in peri-urban rainforest fragments. Sera pools of each species were tested by ELISA to determine the intensity of each bacterial protein affinity to the immunoglobulins. When comparing the affinity to both proteins, immunoglobulins from D. rotundus, S. xanthosternos, and T. tetradactyla presented a higher affinity to protein G, whereas a higher affinity to protein A was found for immunoglobulins of C. penicillata and L. pardalis. The only species that presented a very low affinity to both bacterial proteins was M. demerarae. This study can be used as a reference for further studies on the development of sensitive and specific immunodiagnostic assays to be used for the monitoring of the health of these wild mammals.


Assuntos
Proteínas de Bactérias , Imunoglobulinas , Mamíferos , Animais , Animais Selvagens/imunologia , Proteínas de Bactérias/imunologia , Brasil , Imunoglobulinas/imunologia , Mamíferos/imunologia
3.
JCI Insight ; 7(19)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214220

RESUMO

Intercellular communication is critical for homeostasis in mammalian systems, including the gastrointestinal (GI) tract. Exosomes are nanoscale lipid extracellular vesicles that mediate communication between many cell types. Notably, the roles of immune cell exosomes in regulating GI homeostasis and inflammation are largely uncharacterized. By generating mouse strains deficient in cell-specific exosome production, we demonstrate deletion of the small GTPase Rab27A in CD11c+ cells exacerbated murine colitis, which was reversible through administration of DC-derived exosomes. Profiling RNAs within colon exosomes revealed a distinct subset of miRNAs carried by colon- and DC-derived exosomes. Among antiinflammatory exosomal miRNAs, miR-146a was transferred from gut immune cells to myeloid and T cells through a Rab27-dependent mechanism, targeting Traf6, IRAK-1, and NLRP3 in macrophages. Further, we have identified a potentially novel mode of exosome-mediated DC and macrophage crosstalk that is capable of skewing gut macrophages toward an antiinflammatory phenotype. Assessing clinical samples, RAB27A, select miRNAs, and RNA-binding proteins that load exosomal miRNAs were dysregulated in ulcerative colitis patient samples, consistent with our preclinical mouse model findings. Together, our work reveals an exosome-mediated regulatory mechanism underlying gut inflammation and paves the way for potential use of miRNA-containing exosomes as a novel therapeutic for inflammatory bowel disease.


Assuntos
Antígenos CD11 , Colite , Exossomos , Inflamação , Células Mieloides , Animais , Antígenos CD11/genética , Antígenos CD11/imunologia , Colite/genética , Colite/imunologia , Exossomos/genética , Exossomos/imunologia , Inflamação/genética , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Intestinos/imunologia , Lipídeos , Mamíferos/genética , Mamíferos/imunologia , Camundongos , MicroRNAs/imunologia , Proteínas Monoméricas de Ligação ao GTP/imunologia , Células Mieloides/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Fator 6 Associado a Receptor de TNF/imunologia
4.
Front Immunol ; 13: 891220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967383

RESUMO

Ym1 is a rodent-specific chitinase-like protein (CLP) lacking catalytic activity, whose cellular origins are mainly macrophages, neutrophils and other cells. Although the detailed function of Ym1 remains poorly understood, Ym1 has been generally recognized as a fundamental feature of alternative activation of macrophages in mice and hence one of the prevalent detecting targets in macrophage phenotype distinguishment. Studies have pointed out that Ym1 may have regulatory effects, which are multifaceted and even contradictory, far more than just a mere marker. Allergic lung inflammation, parasite infection, autoimmune diseases, and central nervous system diseases have been found associations with Ym1 to varying degrees. Thus, insights into Ym1's role in diseases would help us understand the pathogenesis of different diseases and clarify the genuine roles of CLPs in mammals. This review summarizes the information on Ym1 from the gene to its expression and regulation and focuses on the association between Ym1 and diseases.


Assuntos
Doença , Lectinas , Macrófagos , beta-N-Acetil-Hexosaminidases , Animais , Quitinases/genética , Quitinases/imunologia , Doença/genética , Imunidade/genética , Imunidade/imunologia , Lectinas/genética , Lectinas/imunologia , Macrófagos/imunologia , Mamíferos/genética , Mamíferos/imunologia , Camundongos , Neutrófilos/imunologia , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/imunologia
5.
Mol Cell ; 81(24): 5099-5111.e8, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34919820

RESUMO

The SARS-CoV-2 spike protein is a critical component of vaccines and a target for neutralizing monoclonal antibodies (nAbs). Spike is also undergoing immunogenic selection with variants that increase infectivity and partially escape convalescent plasma. Here, we describe Spike Display, a high-throughput platform to rapidly characterize glycosylated spike ectodomains across multiple coronavirus-family proteins. We assayed ∼200 variant SARS-CoV-2 spikes for their expression, ACE2 binding, and recognition by 13 nAbs. An alanine scan of all five N-terminal domain (NTD) loops highlights a public epitope in the N1, N3, and N5 loops recognized by most NTD-binding nAbs. NTD mutations in variants of concern B.1.1.7 (alpha), B.1.351 (beta), B.1.1.28 (gamma), B.1.427/B.1.429 (epsilon), and B.1.617.2 (delta) impact spike expression and escape most NTD-targeting nAbs. Finally, B.1.351 and B.1.1.28 completely escape a potent ACE2 mimic. We anticipate that Spike Display will accelerate antigen design, deep scanning mutagenesis, and antibody epitope mapping for SARS-CoV-2 and other emerging viral threats.


Assuntos
Mamíferos/virologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/virologia , Linhagem Celular , Epitopos/genética , Epitopos/imunologia , Células HEK293 , Humanos , Mamíferos/imunologia , Ligação Proteica/genética , Ligação Proteica/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
6.
Immunohorizons ; 5(12): 953-971, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911745

RESUMO

Lymphocytes within the intestinal epithelial layer (IEL) in mammals have unique composition compared with their counterparts in the lamina propria. Little is known about the role of some of the key colonic IEL subsets, such as TCRαß+CD8+ T cells, in inflammation. We have recently described liver-enriched innate-like TCRαß+CD8αα regulatory T cells, partly controlled by the non-classical MHC molecule, Qa-1b, that upon adoptive transfer protect from T cell-induced colitis. In this study, we found that TCRαß+CD8αα T cells are reduced among the colonic IEL during inflammation, and that their activation with an agonistic peptide leads to significant Qa-1b-dependent protection in an acute model of colitis. Cellular expression of Qa-1b during inflammation and corresponding dependency in peptide-mediated protection suggest that Batf3-dependent CD103+CD11b- type 1 conventional dendritic cells control the protective function of TCRαß+CD8αα T cells in the colonic epithelium. In the colitis model, expression of the potential barrier-protective gene, Muc2, is enhanced upon administration of a Qa-1b agonistic peptide. Notably, in steady state, the mucin metabolizing Akkermansia muciniphila was found in significantly lower abundance amid a dramatic change in overall microbiome and metabolome, increased IL-6 in explant culture, and enhanced sensitivity to dextran sulfate sodium in Qa-1b deficiency. Finally, in patients with inflammatory bowel disease, we found upregulation of HLA-E, a Qa-1b analog with inflammation and biologic non-response, in silico, suggesting the importance of this regulatory mechanism across species.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Homeostase/imunologia , Intestino Grosso/imunologia , Transferência Adotiva , Animais , Antígenos CD , Antígenos CD8 , Feminino , Cadeias alfa de Integrinas , Intestino Grosso/metabolismo , Mamíferos/imunologia , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T alfa-beta , Linfócitos T Reguladores/imunologia
7.
Viruses ; 13(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34960680

RESUMO

We conducted a systematic review and meta-analysis to investigate the prevalence and current knowledge of influenza A virus (IAV) and influenza D virus (IDV) in non-human mammalian hosts in Africa. PubMed, Google Scholar, Wiley Online Library and World Organisation for Animal Health (OIE-WAHIS) were searched for studies on IAV and IDV from 2000 to 2020. Pooled prevalence and seroprevalences were estimated using the quality effects meta-analysis model. The estimated pooled prevalence and seroprevalence of IAV in pigs in Africa was 1.6% (95% CI: 0-5%) and 14.9% (95% CI: 5-28%), respectively. The seroprevalence of IDV was 87.2% (95% CI: 24-100%) in camels, 9.3% (95% CI: 0-24%) in cattle, 2.2% (95% CI: 0-4%) in small ruminants and 0.0% (95% CI: 0-2%) in pigs. In pigs, H1N1 and H1N1pdm09 IAVs were commonly detected. Notably, the highly pathogenic H5N1 virus was also detected in pigs. Other subtypes detected serologically and/or virologically included H3N8 and H7N7 in equids, H1N1, and H3N8 and H5N1 in dogs and cats. Furthermore, various wildlife animals were exposed to different IAV subtypes. For prudent mitigation of influenza epizootics and possible human infections, influenza surveillance efforts in Africa should not neglect non-human mammalian hosts. The impact of IAV and IDV in non-human mammalian hosts in Africa deserves further investigation.


Assuntos
Vírus da Influenza A , Mamíferos/virologia , Infecções por Orthomyxoviridae/veterinária , Thogotovirus , África/epidemiologia , Animais , Animais Selvagens/virologia , Anticorpos Antivirais/sangue , Vírus da Influenza A/imunologia , Mamíferos/imunologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Prevalência , Estudos Soroepidemiológicos , Thogotovirus/imunologia
8.
Sci Rep ; 11(1): 22098, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764369

RESUMO

Small antibody mimetics that contain high-affinity target-binding peptides can be lower cost alternatives to monoclonal antibodies (mAbs). We have recently developed a method to create small antibody mimetics called FLuctuation-regulated Affinity Proteins (FLAPs), which consist of a small protein scaffold with a structurally immobilized target-binding peptide. In this study, to further develop this method, we established a novel screening system for FLAPs called monoclonal antibody-guided peptide identification and engineering (MAGPIE), in which a mAb guides selection in two manners. First, antibody-guided design allows construction of a peptide library that is relatively small in size, but sufficient to identify high-affinity binders in a single selection round. Second, in antibody-guided screening, the fluorescently labeled mAb is used to select mammalian cells that display FLAP candidates with high affinity for the target using fluorescence-activated cell sorting. We demonstrate the reliability and efficacy of MAGPIE using daclizumab, a mAb against human interleukin-2 receptor alpha chain (CD25). Three FLAPs identified by MAGPIE bound CD25 with dissociation constants of approximately 30 nM as measured by biolayer interferometry without undergoing affinity maturation. MAGPIE can be broadly adapted to any mAb to develop small antibody mimetics.


Assuntos
Anticorpos Monoclonais/imunologia , Técnicas de Visualização da Superfície Celular/métodos , Subunidade alfa de Receptor de Interleucina-2/imunologia , Mamíferos/imunologia , Ligação Proteica/imunologia , Sequência de Aminoácidos , Animais , Afinidade de Anticorpos/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Citometria de Fluxo/métodos , Células HEK293 , Células HeLa , Humanos , Células K562 , Biblioteca de Peptídeos
9.
Commun Biol ; 4(1): 1196, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645933

RESUMO

Emerging mutations in SARS-CoV-2 cause several waves of COVID-19 pandemic. Here we investigate the infectivity and antigenicity of ten emerging SARS-CoV-2 variants-B.1.1.298, B.1.1.7(Alpha), B.1.351(Beta), P.1(Gamma), P.2(Zeta), B.1.429(Epsilon), B.1.525(Eta), B.1.526-1(Iota), B.1.526-2(Iota), B.1.1.318-and seven corresponding single amino acid mutations in the receptor-binding domain using SARS-CoV-2 pseudovirus. The results indicate that the pseudovirus of most of the SARS-CoV-2 variants (except B.1.1.298) display slightly increased infectivity in human and monkey cell lines, especially B.1.351, B.1.525 and B.1.526 in Calu-3 cells. The K417N/T, N501Y, or E484K-carrying variants exhibit significantly increased abilities to infect mouse ACE2-overexpressing cells. The activities of furin, TMPRSS2, and cathepsin L are increased against most of the variants. RBD amino acid mutations comprising K417T/N, L452R, Y453F, S477N, E484K, and N501Y cause significant immune escape from 11 of 13 monoclonal antibodies. However, the resistance to neutralization by convalescent serum or vaccines elicited serum is mainly caused by the E484K mutation. The convalescent serum from B.1.1.7- and B.1.351-infected patients neutralized the variants themselves better than other SARS-CoV-2 variants. Our study provides insights regarding therapeutic antibodies and vaccines, and highlights the importance of E484K mutation.


Assuntos
COVID-19/virologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/terapia , Linhagem Celular , Células HEK293 , Humanos , Imunização Passiva/métodos , Mamíferos/imunologia , Camundongos , Mutação , Pandemias , Primatas/imunologia , Ligação Proteica , Tropismo/genética , Soroterapia para COVID-19
10.
Vet Immunol Immunopathol ; 240: 110316, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34474261

RESUMO

CD4+ helper T cells play key and diverse roles in inducing adaptive immune responses in vertebrates. The CD4 molecule, which is found on the surfaces of CD4+ helper T cells, can be used to distinguish subsets of helper T cells. Teleosts are the oldest living species with bona-fide CD4 coreceptors. Although some components of immune systems of teleosts and mammals appear to be similar, many physiological differences are represented between them. Previous studies have shown that two CD4 paralogs are present in teleosts, whereas only one is present in mammals. Therefore, in this review, the CD4 molecular structure, expression profiles, subpopulations, and biological functions of teleost CD4+ helper T cells were summarized and compared with those of their mammalian counterparts to understand the differences in CD4 molecules between teleosts and mammals. This review provides suggestions for further studies on the CD4 molecular function and regulatory mechanism of CD4+ helper T cells in teleost fish and will help establish therapeutic strategies to control fish diseases in the future.


Assuntos
Peixes/imunologia , Linfócitos T Auxiliares-Indutores , Animais , Mamíferos/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia
11.
J Immunol ; 207(2): 371-375, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34233911

RESUMO

The repertoire of Abs is generated by genomic rearrangements during B cell differentiation. Although V(D)J rearrangements lead to repertoires mostly different between individuals, recent studies have shown that they contain a substantial fraction of overrepresented and shared "public" clones. We previously reported a strong public IgHµ clonotypic response against the rhabdovirus viral hemorrhagic septicemia virus in a teleost fish. In this study, we identified an IgL chain associated with this public response that allowed us to characterize its functionality. We show that this public Ab response has a potent neutralizing capacity that is typically associated with host protection during rhabdovirus infections. We also demonstrate that the public response is not restricted to a particular trout isogenic line but expressed in multiple genetic backgrounds and may be used as a marker of successful vaccination. Our work reveals that public B cell responses producing generic Abs constitute a mechanism of protection against infection conserved across vertebrates.


Assuntos
Formação de Anticorpos/imunologia , Peixes/imunologia , Mamíferos/imunologia , Animais , Linfócitos B/imunologia , Células Clonais/imunologia , Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/imunologia , Recombinação V(D)J/imunologia , Vacinação/métodos
12.
Front Immunol ; 12: 639570, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194425

RESUMO

Bacteriophages are able to affect the human immune system. Phage-specific antibodies are considered as major factors shaping phage pharmacokinetics and bioavailability. So far, general knowledge of phage antigenicity nevertheless remains extremely limited. Here we present comparative studies of immunogenicity in two therapeutic bacteriophages, A3R and 676Z, active against Staphylococcus aureus, routinely applied in patients at the Phage Therapy Unit, Poland. Comparison of the overall ability of whole phages to induce specific antibodies in a murine model revealed typical kinetics of IgM and IgG induction by these two phages. In further studies we identified the location of four phage proteins in the virions, with the focus on the external capsid head (Mcp) or tail sheath (TmpH) or an unidentified precise location (ORF059 and ORF096), and we confirmed their role as structural proteins of these viruses. Next, we compared the immune response elicited by these proteins after phage administration in mice. Similar to that in T4 phage, Mcp was the major element of the capsid that induced specific antibodies. Studies of protein-specific sera revealed that antibodies specific to ORF096 were able to neutralize antibacterial activity of the phages. In humans (population level), none of the studied proteins plays a particular role in the induction of specific antibodies; thus none potentially affects in a particular way the effectiveness of A3R and 676Z. Also in patients subjected to phage therapy, we did not observe increased specific immune responses to the investigated proteins.


Assuntos
Imunidade/imunologia , Mamíferos/imunologia , Fagos de Staphylococcus/imunologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Anticorpos/imunologia , Formação de Anticorpos/imunologia , Capsídeo/imunologia , Proteínas do Capsídeo/imunologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Cinética , Masculino , Mamíferos/microbiologia , Mamíferos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Terapia por Fagos/métodos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/virologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/virologia , Vírion/imunologia
13.
BMC Microbiol ; 21(1): 180, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34126929

RESUMO

BACKGROUND: In the last few decades, considerable attention has been paid to entomopathogenic fungi as biocontrol agents, however little is known about their mode of action and safety. This study aimed to investigate the toxicity of Aspergillus flavus in insect Spodoptera litura by analyzing the effect of fungal extract on antioxidant and cellular immune defense. In antioxidant defense, the lipid peroxidation (Malondialdehyde content) and antioxidant enzymes activities (Catalase, Ascorbate peroxidase, Superoxide dismutase) were examined. In cellular immune defense, effect of A. flavus extract was analyzed on haemocytes using Scanning Electron Microscopy (SEM). Furthermore, mammalian toxicity was analyzed with respect to DNA damage induced in treated rat relative to control by comet assay using different tissues of rat (blood, liver, and kidney). RESULTS: Ethyl acetate extract of A. flavus was administrated to the larvae of S.litura using artificial diet method having concentration 1340.84 µg/ml (LC50 of fungus). The effect was observed using haemolymph of insect larvae for different time intervals (24, 48, 72 and 96). In particular, Malondialdehyde content and antioxidant enzymes activities were found to be significantly (p ≤ 0.05) increased in treated larvae as compared to control. A. flavus ethyl acetate extract also exhibit negative impact on haemocytes having major role in cellular immune defense. Various deformities were observed in different haemocytes like cytoplasmic leakage and surface abnormalities etc. Genotoxicity on rat was assessed using different tissues of rat (blood, liver, and kidney) by comet assay. Non-significant effect of A. flavus extract was found in all the tissues (blood, liver, and kidney). CONCLUSIONS: Overall the study provides important information regarding the oxidative stress causing potential and immunosuppressant nature of A. flavus against S. litura and its non toxicity to mammals (rat), mammals (rat), suggesting it an environment friendly pest management agent.


Assuntos
Aspergillus flavus/fisiologia , Mamíferos/metabolismo , Mamíferos/microbiologia , Estresse Oxidativo , Spodoptera/microbiologia , Animais , Dano ao DNA , Rim/imunologia , Rim/metabolismo , Rim/microbiologia , Larva/genética , Larva/imunologia , Larva/metabolismo , Larva/microbiologia , Fígado/imunologia , Fígado/metabolismo , Fígado/microbiologia , Masculino , Malondialdeído/metabolismo , Mamíferos/genética , Mamíferos/imunologia , Ratos , Ratos Wistar , Spodoptera/genética , Spodoptera/imunologia , Spodoptera/metabolismo
14.
Nat Rev Microbiol ; 19(10): 639-653, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34045709

RESUMO

Developing general principles of host-microorganism interactions necessitates a robust understanding of the eco-evolutionary processes that structure microbiota. Phylosymbiosis, or patterns of microbiome composition that can be predicted by host phylogeny, is a unique framework for interrogating these processes. Identifying the contexts in which phylosymbiosis does and does not occur facilitates an evaluation of the relative importance of different ecological processes in shaping the microbial community. In this Review, we summarize the prevalence of phylosymbiosis across the animal kingdom on the basis of the current literature and explore the microbial community assembly processes and related host traits that contribute to phylosymbiosis. We find that phylosymbiosis is less prevalent in taxonomically richer microbiomes and hypothesize that this pattern is a result of increased stochasticity in the assembly of complex microbial communities. We also note that despite hosting rich microbiomes, mammals commonly exhibit phylosymbiosis. We hypothesize that this pattern is a result of a unique combination of mammalian traits, including viviparous birth, lactation and the co-evolution of haemochorial placentas and the eutherian immune system, which compound to ensure deterministic microbial community assembly. Examining both the individual and the combined importance of these traits in driving phylosymbiosis provides a new framework for research in this area moving forward.


Assuntos
Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos/genética , Especificidade de Hospedeiro/genética , Mamíferos/microbiologia , Filogenia , Simbiose/genética , Animais , Interações entre Hospedeiro e Microrganismos/imunologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Especificidade de Hospedeiro/imunologia , Especificidade de Hospedeiro/fisiologia , Mamíferos/imunologia , Camundongos , RNA Ribossômico 16S , Simbiose/fisiologia
15.
Genes (Basel) ; 12(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535438

RESUMO

This paper is focused on eicosanoid signaling in insect immunology. We begin with eicosanoid biosynthesis through the actions of phospholipase A2, responsible for hydrolyzing the C18 polyunsaturated fatty acid, linoleic acid (18:2n-6), from cellular phospholipids, which is subsequently converted into arachidonic acid (AA; 20:4n-6) via elongases and desaturases. The synthesized AA is then oxygenated into one of three groups of eicosanoids, prostaglandins (PGs), epoxyeicosatrienoic acids (EETs) and lipoxygenase products. We mark the distinction between mammalian cyclooxygenases and insect peroxynectins, both of which convert AA into PGs. One PG, PGI2 (also called prostacyclin), is newly discovered in insects, as a negative regulator of immune reactions and a positive signal in juvenile development. Two new elements of insect PG biology are a PG dehydrogenase and a PG reductase, both of which enact necessary PG catabolism. EETs, which are produced from AA via cytochrome P450s, also act in immune signaling, acting as pro-inflammatory signals. Eicosanoids signal a wide range of cellular immune reactions to infections, invasions and wounding, including nodulation, cell spreading, hemocyte migration and releasing prophenoloxidase from oenocytoids, a class of lepidopteran hemocytes. We briefly review the relatively scant knowledge on insect PG receptors and note PGs also act in gut immunity and in humoral immunity. Detailed new information on PG actions in mosquito immunity against the malarial agent, Plasmodium berghei, has recently emerged and we treat this exciting new work. The new findings on eicosanoid actions in insect immunity have emerged from a very broad range of research at the genetic, cellular and organismal levels, all taking place at the international level.


Assuntos
Eicosanoides/genética , Insetos/genética , Fosfolipases A2/genética , Transdução de Sinais/genética , Animais , Ácido Araquidônico/genética , Ácido Araquidônico/imunologia , Eicosanoides/biossíntese , Eicosanoides/imunologia , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/imunologia , Hemócitos/enzimologia , Insetos/imunologia , Insetos/metabolismo , Lipoxigenase/genética , Lipoxigenase/imunologia , Mamíferos/genética , Mamíferos/imunologia , Fosfolipases A2/imunologia , Fator de Ativação de Plaquetas/análogos & derivados , Fator de Ativação de Plaquetas/genética , Fator de Ativação de Plaquetas/imunologia , Prostaglandina-Endoperóxido Sintases/genética
16.
Pathog Dis ; 79(3)2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-33544836

RESUMO

In recent decades, Galleria mellonella (Lepidoptera: Pyralidae) have emerged as a model system to explore experimental aspects of fungal pathogenesis. The benefits of the G. mellonella model include being faster, cheaper, higher throughput and easier compared with vertebrate models. Additionally, as invertebrates, their use is subject to fewer ethical and regulatory issues. However, for G. mellonella models to provide meaningful insight into fungal pathogenesis, the G. mellonella-fungal interactions must be comparable to mammalian-fungal interactions. Indeed, as discussed in the review, studies suggest that G. mellonella and mammalian immune systems share many similarities, and fungal virulence factors show conserved functions in both hosts. While the moth model has opened novel research areas, many comparisons are superficial and leave large gaps of knowledge that need to be addressed concerning specific mechanisms underlying G. mellonella-fungal interactions. Closing these gaps in understanding will strengthen G. mellonella as a model for fungal virulence in the upcoming years. In this review, we provide comprehensive comparisons between fungal pathogenesis in mammals and G. mellonella from immunological and virulence perspectives. When information on an antifungal immune component is unknown in G. mellonella, we include findings from other well-studied Lepidoptera. We hope that by outlining this information available in related species, we highlight areas of needed research and provide a framework for understanding G. mellonella immunity and fungal interactions.


Assuntos
Fungos/imunologia , Imunidade , Mamíferos/imunologia , Mariposas/imunologia , Micoses/imunologia , Fatores de Virulência , Virulência , Animais , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Humanos , Invertebrados/microbiologia , Larva/imunologia , Larva/microbiologia , Mamíferos/microbiologia , Mariposas/microbiologia , Micoses/microbiologia
17.
Cell Host Microbe ; 29(3): 347-361.e12, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33497603

RESUMO

Most mammals express a functional GGTA1 gene encoding the N-acetyllactosaminide α-1,3-galactosyltransferase enzyme, which synthesizes Gal-α1-3Gal-ß1-4GlcNAc (α-gal) and are thus tolerant to this self-expressed glycan. Old World primates including humans, however, carry loss-of-function mutations in GGTA1 and lack α-gal. Presumably, fixation of such mutations was propelled by natural selection, favoring the emergence of α-gal-specific immunity, conferring resistance to α-gal-expressing pathogens. Here, we show that loss of Ggta1 function in mice enhances resistance to bacterial sepsis, irrespectively of α-Gal-specific immunity. Rather, the absence of α-gal from IgG-associated glycans increases IgG effector function via a mechanism associated with enhanced IgG-Fc gamma receptor (FcγR) binding. The ensuing survival advantage against sepsis comes alongside a cost of accelerated reproductive senescence in Ggta1-deleted mice. Mathematical modeling of this trade-off suggests that high exposure to virulent pathogens exerts sufficient selective pressure to fix GGTA1 loss-of-function mutations, as likely occurred during the evolution of primates toward humans.


Assuntos
Evolução Biológica , Dissacarídeos , Sepse/microbiologia , Animais , Bactérias , Proteínas de Transporte , Proteínas de Ligação a DNA , Feminino , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Glicoproteínas , Hominidae , Humanos , Imunoglobulina G/imunologia , Masculino , Mamíferos/imunologia , Camundongos , Camundongos Knockout , Polissacarídeos , Primatas
18.
J Immunol ; 206(5): 1046-1057, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33472906

RESUMO

The zebrafish (Danio rerio) is a powerful model organism for studies of the innate immune system. One apparent difference between human and zebrafish innate immunity is the cellular machinery for LPS sensing. In amniotes, the protein complex formed by TLR4 and myeloid differentiation factor 2 (Tlr4/Md-2) recognizes the bacterial molecule LPS and triggers an inflammatory response. It is believed that zebrafish have neither Md-2 nor Tlr4; Md-2 has not been identified outside of amniotes, whereas the zebrafish tlr4 genes appear to be paralogs, not orthologs, of amniote TLR4s We revisited these conclusions. We identified a zebrafish gene encoding Md-2, ly96 Using single-cell RNA sequencing, we found that ly96 is transcribed in cells that also transcribe genes diagnostic for innate immune cells, including the zebrafish tlr4-like genes. In larval zebrafish, ly96 is expressed in a small number of macrophage-like cells. In a functional assay, zebrafish Md-2 and Tlr4ba form a complex that activates NF-κB signaling in response to LPS. In larval zebrafish ly96 loss-of-function mutations perturbed LPS-induced cytokine production but gave little protection against LPS toxicity. Finally, by analyzing the genomic context of tlr4 genes in 11 jawed vertebrates, we found that tlr4 arose prior to the divergence of teleosts and tetrapods. Thus, an LPS-sensitive Tlr4/Md-2 complex is likely an ancestral feature shared by mammals and zebrafish, rather than a de novo invention on the tetrapod lineage. We hypothesize that zebrafish retain an ancestral, low-sensitivity Tlr4/Md-2 complex that confers LPS responsiveness to a specific subset of innate immune cells.


Assuntos
Antígeno 96 de Linfócito/genética , Receptor 4 Toll-Like/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Linhagem Celular , Células HEK293 , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Inflamação/genética , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Antígeno 96 de Linfócito/imunologia , Macrófagos/imunologia , Mamíferos/genética , Mamíferos/imunologia , Camundongos , NF-kappa B/genética , NF-kappa B/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/imunologia
19.
Immunogenetics ; 73(1): 93-109, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33410929

RESUMO

Leukocyte immune-type receptors (LITRs) are a large family of immunoregulatory receptor-types originally identified in the channel catfish (Ictalurus punctatus (Ip)LITRs). Phylogenetic analyses of LITRs show that they share distant evolutionary relationships with important mammalian immunoregulatory receptors belonging to the Fc receptors family and the leukocyte receptor complex (LRC), but their syntenic relationships with these immunoglobulin superfamily members have not been investigated. To further examine the possible evolutionary connections between teleost LITRs and various mammalian immunoregulatory receptor-types, we surveyed the genomic databases of representative vertebrate taxa and our results show that teleost LITRs generally exist in large genomic clusters, which are linked to vangl2, arhgef11, and slam family genes, features that are also shared by amphibian and mammalian Fc receptor-like molecules (FCRLs). Moreover, detailed phylogenetic comparisons between the individual Ig-like domains of LITRs and mammalian FCRLs shows that these receptors share related Ig-like domains indicative of their common ancestry. However, contrary to our previous reports, no supportive evidence for phylogenetic relationships between the Ig-like domains of LITRs with the Ig-like domains of LRC-encoded mammalian immunoregulatory receptors was found. We also identified an LRC-like region in the zebrafish genome, but no expanded litr-related genes were located in this region. Similarly, no lilr-related genes were found in spotted gar, a representative basal ray-finned fish. Finally, two distantly related fcrls and an LRC-like gene were identified in the elephant shark genome, suggesting that the loss of an immunoregulatory receptor-containing LRC region may be unique to ray-finned fish.


Assuntos
Peixes/genética , Mamíferos/genética , Receptores Imunológicos/genética , Sintenia , Animais , Peixes/classificação , Peixes/imunologia , Genoma/genética , Imunidade Inata/genética , Mamíferos/classificação , Mamíferos/imunologia , Família Multigênica , Filogenia , Receptores Fc/genética
20.
Immunogenetics ; 73(1): 17-33, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33449123

RESUMO

Immunoglobulins and T cell receptors (TCR) have obvious structural similarities as well as similar immunogenetic diversification and selection mechanisms. Nevertheless, the two receptor systems and the loci that encode them are distinct in humans and classical murine models, and the gene segments comprising each repertoire are mutually exclusive. Additionally, while both B and T cells employ recombination-activating genes (RAG) for primary diversification, immunoglobulins are afforded a supplementary set of activation-induced cytidine deaminase (AID)-mediated diversification tools. As the oldest-emerging vertebrates sharing the same adaptive B and T cell receptor systems as humans, extant cartilaginous fishes allow a potential view of the ancestral immune system. In this review, we discuss breakthroughs we have made in studies of nurse shark (Ginglymostoma cirratum) T cell receptors demonstrating substantial integration of loci and diversification mechanisms in primordial B and T cell repertoires. We survey these findings in this shark model where they were first described, while noting corroborating examples in other vertebrate groups. We also consider other examples where the gnathostome common ancestry of the B and T cell receptor systems have allowed dovetailing of genomic elements and AID-based diversification approaches for the TCR. The cartilaginous fish seem to have retained this T/B cell plasticity to a greater extent than more derived vertebrate groups, but representatives in all vertebrate taxa except bony fish and placental mammals show such plasticity.


Assuntos
Imunoglobulinas/genética , Mamíferos/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos/genética , Tubarões/imunologia , Imunidade Adaptativa , Animais , Citidina Desaminase/imunologia , Evolução Molecular , Humanos , Mamíferos/genética , Tubarões/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...